Future Russian magnetospheric & heliospheric missions

L.M. Zelenyi, A.A. Petrukovich, G.N.Zastenker, M.M.Mogilevsky, A.A.Skalsky

Space Research Institute, Russia

V.D.Kuznetsov IZMIRAN, Russia

Yu. Kotov MEPhl, Russia

Solar-terrestrial payload onboard SPECTR-R

SPECTR-R is an international space VLBI project of Russian Space Agency.

A 10-meter radio telescope will be launched in late **2007** to an orbit with apogee 350 000 km, perigee 5 000 km inclination 54°.

PLASMA-F is solar-terrestiral payload of opportunity onboard SPECTR-R.

Targets:

Fine-scale solar wind, IMF, SCL structures

Solar wind, IMF, SCL monitoring

With participation of Slovakia, Czech Rep., Greece, Ukraine, China

PLASMA-F instruments

Magnetic field instrument MMFF

2 DC magnetometers

2 AC magnetic sensors (10 Hz – 100 kHz)

PI: A. Skalsky, IKI, w/part LSC

Fast solar wind monitor BMSW

6 Faraday cups with possibility of instantaneous solar wind velocity vector and density determination

PI: G. Zastenker, IKI, w/part ChU, CSS

Energetic particle instrument MEP2

geometric factor ~ 1 electrons 15-350 keV ions 15- 3200 keV

PI: K. Kudela, IEP, w/part DUTH/SSL, IKI

Data management system SSNI-2

200 GB onboard memory possibility of intelligent data handling and compression PI: L. Chesalin, IKI

Space Research Institute

PLASMA-F features

- Synchronized 32 Hz measurements of magnetic field, solar wind ion density, velocity vector, temperature, energetic ions and electrons.
- Multi-point solar wind observations with other projects in the frame of ILWS.
- 1 GByte of data per week
- Tests of intelligent onboard data handling

<u>Fast-track experiment:</u> decision taken & funding started end of 2004

launch end of 2007

Project Scientist: G.N.Zastenker gzastenk@iki.rssi.ru

Investigation of wave-particle interactions and plasma dynamics in the inner magnetosphere

Space Research Institute, Moscow Institute of Applied Physics, N.Novgorod European participation

Magnetosynhronous orbit

Orbit:

Apogee: ~30 000 km, Perigee: ~ 1 800 km,

Inclination: + and - 63.4° (two S/C)

Co-rotation magnetic tube: up to 3 hours

Launch: 2012

http://resonance.romance.iki.rssi.ru

RESONANCE

Magnetospheric science and space weather-related investigations:

Ring current and outer radiation belt dynamics

Plasmasphere & plasmapause dynamics

Sub-auroral zone, auroral zone, polar cap

Special task:

magnetospheric cyclotron maser observations and active experiments

Excitation of waves

Modification of precipitation

Modification of reflection index at the footprints

RESONANCE

Launch 2012: will operate at the same time with

- Radiation Belt Storm Probes by NASA LWS
- ERG
- ORBITALS

ILWS inner magnetosphere constellation in 2012?

International Space Station

electromagnetic environment experiment "Obstanovka"

Multipoint multi-component wave and field experiment.

Deployment – 2007, by IKI

Electra-L: geostationary meteosat, in eastern longitude sector.

MeV-range particles KeV-range particles X-ray photometer Magnetometer

to be launched in 2007, Institute of Applied Geophysics, Meteoservice

CORONAS-PHOTON

Solar imaging and spectroscopy from EUV to 2000 MeV

To be launched in 2007

Moscow Engineering Physics Institute

Yu. Kotov

http://iaf.mephi.ru

RUSSIA UKRAINE INDIA POLAND

Project "CORONAS-PHOTON"

CORONAS (Complex ORbital Observations Near-Earth of

Activity of the Sun) – Russian program for study of the Sun and solar-terrestrial connections physics by series of spacecrafts, which provides launching of three solar-oriented satellites onto the near-Earth orbit.

"CORONAS-PHOTON" is the third satellite in this series. Two previous missions of the project are "CORONAS-I" (launched on March 2, 1994) and "CORONAS-F" (launched on July 31, 2001).

Launching date of "CORONAS-PHOTON" spacecraft is 2006.

MEPhI – Moscow Engineering Physics Institute (State University) is the main organization responsible for the scientific payload complex of the "CORONAS-PHOTON" mission.

NIIEM – Research Institute for Electromechanics (Moscow region, Istra) is the main organization responsible for the spacecraft "CORONAS-PHOTON".

Principal Investigator of the project – Director of Astrophysics Institute at MEPhI Dr. Yuri D. Kotov

Technical director and chief designer of the spacecraft – Deputy Chief Designer of NIIEM **Dr. Rashid S. Salikhov**

Main goal of the project:

The investigation of energy accumulation and its transformation into energy of accelerated particles processes during solar flares; the study of the acceleration mechanisms, propagation and interaction of fast particles in the solar atmosphere; the study of the solar activity correlation with physical-chemical processes in the Earth upper atmosphere.

Objectives of the mission:

Physics of the Sun

- Determination of distribution functions of accelerated electrons, protons and nuclei and their dynamics with a high time resolution;
- Research of difference in acceleration dynamics of electrons and protons (nuclei);
- Research of distribution function variations for high energy particles (up to a few GeV);
- Research of interacting particle angular anisotropy by statistical analysis of radiation spectra and linear polarization parameters of hard X-rays;
- Study of directional effects in the region of high energy gamma radiation;
- Determination of mechanisms and requirements of electrons and protons acceleration in different flare phases, and parameters of propagation region of accelerated particles;
- Determination of elemental abundance in the region of gamma-ray production by gamma spectroscopy and capture of low energy neutrons in the solar atmosphere;
- Determination of radiation generation altitudes by observation of deuteron line weakening from limb flares;
- Determination of energy spectra view of accelerated protons and nuclei and dynamics of these spectra according to nuclear gamma-line ratio;
- Study of light elements generation (D, ³He, Li, Be) during flares;

Solar-terrestrial connections physics

- Research of chemical and isotopic compositions of nuclei accelerated in flare on the Earth orbit, and also energy and temporal parameters of flare electrons and protons;
- Monitoring of the Earth upper atmosphere by absorption of extreme ultraviolet of the quiet Sun;

Astrophysics

- Study of hard X-ray and gamma radiation from gamma-ray bursts;
- Study of X-ray radiation from the bright local sources along Ecliptic plane.

MAIN CHARACTERISTICS OF THE SPACECRAFT

Spacecraft weight, kg	1900
Scientific payload weight, kg	540
Orbit:	
· type	circular
· height, km	500
· inclination, deg	
Accuracy of the spacecraft longitudinal axis orientation to the Sun, arc min	better than 5
Determination accuracy of the spacecraft longitudinal axis orientation on the S	Sun, arc min 3
Angular velocity stabilization of the spacecraft, deg/s less	s than 0.005
Accuracy of the satellite position measurement:	
•along the orbit, m	±1000
•by height and in transverse directions, m	±500
Volume of scientific information stored per day, Gbit	8.2
Information transmitted during one communication session, Mbit	2048
Nominal mission lifetime, years	at least 3

SCIENTIFIC PAYLOAD COMPLEX "PHOTON"

Instrument	Parameters registered radiation	Developing organization		
Ele	Electromagnetic radiation and neutrons			
High energy spectrometer "NATALYA-2M"	 Gamma-ray spectroscopy 0.3– 2000 MeV; solar neutrons 2θ 300 MeV 	Moscow Engineering Physics Institute (MEPhI), Russia		
Low energy gamma- ray telescope RT-2	 Hard X-ray spectroscopy 10–150 keV in phoswich mode; spectrometric mode 0.10 – 2 MeV 	TATA Institute of Fundamental Research (TIFR), Mumbai (Bombay), India		
Hard X-ray polarimeter- spectrometer "PENGUIN-M"	 Hard X-ray polarization 20 – 150 keV; soft X-ray monitoring 2 – 10 keV; X-ray & gamma-ray spectroscopy 0.015 – 5 MeV 	Ioffe Physical-Technical Institute, St-Petersburg, Russia; MEPhI, Russia		
X-ray and gamma- ray spectrometer "KONUS-RF"	Solar flares and gamma-ray bursts hard X-ray & gamma-ray spectroscopy in the energy range of 10 keV– 12 MeVwith high time resolution	Ioffe Physical-Technical Institute, St-Petersburg, Russia		

SCIENTIFIC PAYLOAD COMPLEX

"PHOTON"

X-rays			
Fast X-ray monitor BRM	Hard X-ray monitoring 20– 600 keV in six channels withime resolution 2– 3 ms	MEPhI, Russia	
Multi-channel ultraviolet monitor PHOKA	 Full disk EUV radiation 1 130 nm in six spectral windows occultation measurements of UV absorption in Earth atmosphere 150 – 500 km 	MEPhI, Russia; Astrophysical Institute of Potsdam (AIP), Germany; Fraungofer Institute (IpM), Freiburg, Germany	
Solar telescope/imaging spectrometer TESIS	Sun full-disk image in spectral channels: • 134A: $\lambda/\Delta\lambda = 10$, spatial res. ~ 1" • 304A: $\lambda\Delta\lambda = 10$, spatial res. ~ 1" Field of view: Disk 35', Corona (2÷5) R_{Sun} • 8.418÷ 8.423A: $\lambda\Delta\lambda = 2x10^4/\text{cell}$, spatial res. = 2", Field of view: 45' (full disk)	Lebedev Physical Institute (LPI), Moscow, Russia	

SCIENTIFIC PAYLOAD COMPLEX "PHOTON"

Cosmic rays		
Charged particle analyzer "ELECTRON-M- PESCA"	Flux and energy spectra registration: protons 1– 20MeV; electrons 0.2–2MeV; nuclei (Z < 26) 2–50MeV/nucleon	Scobeltsyn Institute of Nuclear Physics at Moscow State University, Russia; University de Alcala, Madrid, Spain
Satellite telescope of electrons and protons STEP-F	Flux and energy spectra registration: • protons 9.8 61.0MeV; • electrons 0.4 14.3MeV; • α- particles37.0 – 246.0 MeV with particle direction measurement accuracy 8–10°	Kharkov National University, Ukraine

SCIENTIFIC PAYLOAD COMPLEX

"PHOTON"

Scientific supply systems		
Magnetometer SM-8M	Measurements of three components of constant magnetic field on satellite orbit in the range of $-55~\mu T$ $+55~\mu T$	FGU NPP "Geologorazvedka" St-Petersburg, Russia; MEPhI, Russia
Scientific data acquisition and registration system SSRNI	Scientific data reception from 24 digital array sources by parallel interface up to 125 Kbit/s; online stored memory single not less than 4 Gbit; transmitting speed in radiok not less than 7.68 Mbit/s	
Control and communications block BUS-FM	Power supply and instrument control with 200 single commands and programmed command information	Space Research Institute, Moscow, Russia
X-band radio transmitter set 8.2 GHz	Scientific data transmission to the ground station in the frequency range of 8.2 GHz (X-band), output power 8 W; includes transmitters, feeders and antenna	Russian Institute of Space Device Engineering, Moscow, Russia

Phobos - SAMPLE RETURN

Sample return mission from Phobos

Launch 2009

Plasma package onboard:

Magnetic field Solar wind ions Planetary ions

Multi point heliospheric measurements with STEREO, Messenger?

Microsatellites

Kolibri, 2002 20.5 kg

TATIANA (MSU)-2005

Chibis, 2008 40 kg

- IKI design and manufacturing
- Launch in LEO orbit from a space station or piggy-back

Scientific tasks:

- Ionospheric monitoring: plasma and wave measurements
- CO2 and atmosphere composition
- Med-resolution surface imaging
- Educational programs

INTERHELIOPROBE

MAIN SCIENTIFIC GOALS

- to identify mechanisms of the coronal heating and solar wind
- to investigate the fine structure and dynamics of the solar atmosphere
- to determine the origin and study the global dynamics of the most powerful solar a ctivity phenomena (solar flares and CMEs) and their influence on the heliosphere and space weather
- to investigate generation and propagation of solar energetic particles
- to observe from high latitudes and to investigate the solar atmosphere and corona in the polar and equatorial regions
- to determine the mechanism of the solar dynamo and solar cycle

INTERHELIOPROBE: heliospheric mission with perihelion 30 Rs After 2012

Solar Instrumentation

- · Optical telescope
- Magnetograph
- X-ray imager-spectrometer
- Coronagraph

Heliospheric instrumentation

- Solar wind ion, electron analyzer
- Dust analyzer
- Magnetic, wave and radio instrument
- Energetic particle telescope
- Neutron detector

Payload 50-60 kg Launch after 2011

Joint IZMIRAN & IKI project

INTERHELIOPROBE

BALLISTIC SCENARIO OF THE MISSION

*multiple gravity-assisted manoeuvres near the planet Venus(VGN

•

- •
- •
- •

•

In - situ measurements near the Sun

Distribution function. Remnants of coronal heating and related plasma processes.

Wave-particle interactions.

Waves and parti

Waves and particles diagnostics.

Beams.

Temperature anisotropy.

Waves and turbulence generation.

Radio emission. Neutrons.

INTERHELIOPROBE

a novel orbital design allow

HIGH-RESOLUTION OBSERVATIONS OF THE SOLAR ATMOSPHERE

CO-ROTATION OBSERVATIONS AND MEASUREMENTS

IN-SITU MEASUREMENTS NEAR THE SUN

OUT-OF-ECLIPTIC OBSERVATIONS

STEREO OBSERVATIONS OF THE SUN

MULTIPLE PERIODS OF OBSERVATIONS OF INVISIBLE SIDE OF THE SUN

Mini-spacecraft for magnetospheric science_("TRAVELLER"")

Currently under development, first launch of the platform in 2008

Possible collaboration with future MMS / X-scale projects

Sci payload weight ~ 40 kg

In a NUTSHELL: UPDATE

• SHORT term: SPECTR-R/Plasma-F
CORONAS_PHOTON
ISS, CHIBIS

• MID-term: PHOBOS, RESONANCE

Geostationary (ELECTRA.....)

• LONG-term: InterHelioProbe, Traveller,

<u>INTERHELIOPROBE</u>

SPACECRAFT

- 3-axis stabilized
- Sun-pointing
- Pointing stability 3"/15 min
- Thermal shield
- Electric propulsion low thrust system (4 thrusters)
- Solar arrays (4 m²)
- High-gain antenna (Ka-/X-band)
- Low-gain antenna (X-band)
- Launcher: Souyz-2

INTERHELIOPROBE SPACECRAFT

INTERHELIOPROBE PAYLOAD

• Mass: 50-70 kg

• Power: 100 W

• Telemetry: 60 kb/s

*Two instrument packages
Heliospheric instrumentation (in-situmeasurements)

Solar instrumentation (remote sensing observations)

• Instrumentation heritage

APEX (launched 1991)

CORONAS-I (1994)

INTERBALL (1995)

CORONAS-F (2001)

INTERHELIOPROBE

SOLAR INSTRUMENTATION

OPTICAL TELESCOPE

•MAGNETOGRAPH

X-RAY IMAGER-SPECTROMETER

CORONAGRAPH

INTERHELIOPROBE

HELIOSPHERIC INSTRUMENTATION

- Solar Wind Ion Analyzer
- Solar Wind Electron Analyzer
- Solar Wind Plasma and Dust Analyzer
- Magnetic Wave Complex
- Magnetometer
- Energetic Particle Telescope
- **Neutron Detector**
- Radio Spectrometer Detector
- Electron Gun

